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Solutions

Note: there are almost certainly typos in this solutions guide.

1 The Problem

1. Draw a 2 by 2, 3 by 2, and 4 by 3 chessboard. With some trial and error, one can find
that there are 2 tilings of the 2 by 2, 3 tilings of the 3 by 2, and 11 tilings of the 4 by 3.
Now, verify the formula for the 2 by 2 case by obtaining the following four terms:
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2. Since dominoes cover 2 squares, a domino tiling can only cover an even number of
squares. This means that Z(M, N) = 0 if M and N are odd. Now verify that the formula is
correct in this case. Note that the term in which m = M+1

2
and n = N+1

2
(which are integers

when M and N are odd) will be equal to zero, which means that the formula is correct.

3. When looking at these kinds of problems, try to find a formula based on smaller cases.
It is easy to show that Z(2, 1) = 1, Z(2, 2) = 2, Z(2, 3) = 3, and Z(2, 4) = 5. This suggests
that the numbers are part of the Fibonacci sequence.

Now let’s try to prove that Z(2, N) = FN where F0 = F1 = 1. The base cases, Z(2, 1)
and Z(2, 2), have been verified. Now we just need to show that Z(2, N) = Z(2, N − 1) +
Z(2, N − 2). To do this, consider the column of squares farthest to the right. These two
squares can either be covered with 1 vertical domino or 2 horizontal dominoes. In the first
case, there are Z(2, N − 1) ways to tile the rest of the board, as a 2 by N − 1 board is left
for tiling. In the second case, the two horizontal dominoes cover the two columns farthest to
the right, leaving an untiled 2 by N − 2 rectangle, which means that there are Z(2, N − 2)
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ways to tile in this case. Since these two cases do not overlap, the total number of tilings is
both Z(2, N) and Z(2, N − 1) + Z(2, N − 2). These quantities must be equal, so therefore
the Fibonacci recursion applies to this situation.

4. Think about this problem in a similar fashion to last problem. It’s impossible to tile
the column to the far right in the 3 by 2N board without a domino covering the column
to the left. Therefore, start by considering a tiling that contains dominoes in the 3 by 2
rectangle farthest to the right that do not cover the rest of the rectangle. There are 3 ways
to tile the 3 by 2 rectangle and Z(3, 2N − 2) ways to tile the rest. This means that so far
3Z(3, 2N − 2) tilings have been accounted for.

However, we haven’t accounted for tilings in which dominoes cover the boundary (rep-
resented by a red line) between the 3 by 2 rectangle and the 3 by 2N − 2 rectangle. Now
consider the various cases that can occur with dominoes covering that boundary. Suppose
that one domino covers the boundary. However, this would result in the following two cases:

In the first situation, the overall rectangle is divided into a 3 by 1 rectangle and a 3 by
2N − 3 rectangle, both of which cannot be tiled by Problem 2. The second case is invalid as
the dominoes will never horizontally line up.

Now suppose that there are two dominoes covering the dividing line, as shown below.
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The dominoes will line up in this case by placing two vertical dominoes as shown above.
There are two ways in which this arrangement can be formed and this arrangement leaves
an untiled 3 by 2N − 4 board, so the total number of tilings for this case is 2Z(3, 2N − 4).
However, note that the left vertical domino can be replaced by two more horizontal dominoes,
resulting in 2Z(3, N−6) more cases. This logic continues, resulting in the following recursion:

Z(3, 2N) = 3Z(3, 2N − 2) +
N−2∑
i=0

Z(3, 2i)

as desired. To obtain the short form of this formula, consider the formulas for 2N and
2N − 2:

Z(3, 2N) = 3Z(3, 2N − 2) + 2Z(3, 2N − 4) + 2Z(3, 2N − 6) + · · ·

Z(3, 2N − 2) = 3Z(3, 2N − 4) + 2Z(3, 2N − 6) + · · ·

Now subtract the second equation from the first. This results in Z(3, 2N)−Z(3, 2N−2) =
3Z(3, 2N − 2)− Z(3, 2N − 4). Adding Z(3, 2N − 2) results in the stated formula.

2 Matrices, Permutations, and Determinants

1. Switch 4 and 1, 2 and 3, and 5 and 2. This is 3 transpositions, so the sign of the
permutation is (−1)3 = −1.

2. When finding the determinant of a matrix, use linearity and alternation to make the
overall determinant into a sum of determinants of identity matrices. For simplicity, go from
left to right.
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Start by noticing that < 1, 3, 6 >=< 1, 0, 0 > +3 < 0, 1, 0 > +6 < 0, 0, 1 >. By linearity,
the desired determinant can be written as:

det

 1 2 2
0 5 7
0 1 5

 + 3 det

 0 2 2
1 5 7
0 1 5

 + 6 det

 0 2 2
0 5 7
1 1 5



Now use linearity on the second column:

(2 det

 1 1 2
0 0 7
0 0 5

 + 5 det

 1 0 2
0 1 7
0 0 5

 + det

 1 0 2
0 0 7
0 1 5

) + 3(2 det

 0 1 2
1 0 7
0 0 5

 +

5 det

 0 0 2
1 1 7
0 0 5

 + det

 0 0 2
1 0 7
0 1 5

) + 6(2 det

 0 1 2
0 0 7
1 0 5

 + 5 det

 0 0 2
0 1 7
1 0 5

 +

det

 0 0 2
0 0 7
1 1 5

)

Eliminate all determinants that are 0 (which have two columns that are the same) and
use linearity again:

(5(2 det

 1 0 1
0 1 0
0 0 0

 + 7 det

 1 0 0
0 1 1
0 0 0

 + 5 det

 1 0 0
0 1 0
0 0 1

) + (2 det

 1 0 1
0 0 0
0 1 0

 +

7 det

 1 0 0
0 0 1
0 1 0

 + 5 det

 1 0 0
0 0 0
0 1 1

)) + 3(2(2 det

 0 1 1
1 0 0
0 0 0

 + 7 det

 0 1 0
1 0 1
0 0 0

 +

5 det

 0 1 0
1 0 0
0 0 1

) + (2 det

 0 0 1
1 0 0
0 1 0

 + 7 det

 0 0 0
1 0 1
0 1 0

 + 5 det

 0 0 0
1 0 0
0 1 1

)) +

6(2(2 det

 0 1 1
0 0 0
1 0 0

 + 7 det

 0 1 0
0 0 1
1 0 0

 + 5 det

 0 1 0
0 0 0
1 0 1

) + 5(2 det

 0 0 1
0 1 0
1 0 0

 +

7 det

 0 0 0
0 1 1
1 0 0

 + 5 det

 0 0 0
0 1 0
1 0 1

))

Eliminate all determinants that are 0 (which have two columns that are the same). We are
finished using linearity. Now use alternation to turn all of the matrices with ones and zeros
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into identity matrices. After doing this and using the fact that det I = 1, the determinant
comes out to be 5(5)-1(7)-3(2(5))+3(1(2))+6(2(7))-6(5(2))=18.

3. When dealing with permutations, try to switch elements so that one always ends up
in its correct place. In this case, start by switching 2 and 1 to put 2 in the first position.
Then, switch 3 and 1 to put 3 in the correct place. After continuing this, k elements were
moved to the correct place in k − 1 transpositions (as 1 automatically ends up in the end
after these transpositions). This means that the sign of the permutation is (−1)k−1. This
permutation is called a k-cycle.

4. Look back at Problem 2. Notice that each term consists of a product of 3 entries, one
from each column, and a matrix with exactly one 1 in each column. This means that for
the general n by n matrix, linearity is applied n times, as there are n columns that can be
expanded upon. Suppose that Tn represents the set of all n tuples of integers between 1 and
n. By generalizing what was found in Problem 2, the determinant can be represented as:

∑
σ∈Tn

M1σ(1) · · ·Mnσ(n) det(eσ(1)| · · · |eσ(n))

where (u|v|w) denotes a matrix with 3 columns (the entries of vector u from top to
bottom, the entries of vector v, and the entries of the vector w) and ei denotes a vector with
n entries where there is a 1 in the i th entry and 0s in the remaining entries.

Now think back to Problem 2 again. First, we eliminated terms equal to 0, which occur
when two columns of (eσ(1)| · · · |eσ(n)) are the same. Therefore, the sum reduces to:

∑
σ∈Sn

M1σ(1) · · ·Mnσ(n) det(eσ(1)| · · · |eσ(n))

where Sn is the set of all permutations acting on {1, 2, · · · , n}.

Once again, think back to Problem 2, where we used alternation to make the determinant
expressions into determinants of identity matrices. To do this, notice that the location of
the 1 in a column i is σ(i). Notice that alternation is like a transposition that changes the
sign of the determinant. Therefore,

det(eσ(1)| · · · |eσ(n)) = sgn(σ−1) det(e1|e2| · · · |en)
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since the permutation σ is applied in reverse to obtain an identity matrix. Substituting
det(e1|e2| · · · |en) = 1 and sgn(σ) = sgn(σ−1) results in the correct formula, which is:

∑
σ∈Sn

sgn(σ)M1σ(1) · · ·Mnσ(n)

5. Up to this point, we have been assuming that the sign of a permutation remains
the same no matter what transposition path is taken. If you think about it, this is a huge
assumption, because there is no obvious reason why a permutation could not be both an
even and an odd number of transpositions away from another transposition.

To prove this, let’s look at an example of the polynomial listed in the hint; namely for
n = 4:

(x1 − x2)(x1 − x3)(x1 − x4)(x2 − x3)(x2 − x4)(x3 − x4)

Suppose that x2 and x4 are switched, which corresponds to the permutation {1, 2, 3, 4} →
{1, 4, 3, 2}. This results in the polynomial:

(x1 − x4)(x1 − x3)(x1 − x2)(x4 − x3)(x4 − x2)(x3 − x2) =
−(x1 − x2)(x1 − x3)(x1 − x4)(x2 − x3)(x2 − x4)(x3 − x4)

It seems that the sign of a permutation corresponds to the sign of this polynomial after
switching the corresponding variables. Does this hold for larger values of n?

It turns out that it does. Consider what happens when xi and xj are switched for i < j.
This results in 2(j− i−1)+1 terms that are switched. Since this number is odd, all negative
signs cancel out except for one. Therefore, a transposition does multiply the sign of this
polynomial by -1, which means that the sign function is well-defined.

6. Use the formula in Problem 4 to evaluate this determinant. The determinant is:

∑
σ,τ∈Sn

(−1)nsgn(σ)sgn(τ)Bσ(1)1 · · ·Bσ(n)nB1τ(1) · · ·Bnτ(n).

= (−1)n(det B)2

where B is an n by n matrix.
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3 Graphs and Adjacency Matrices

1. Label the vertices in a counterclockwise fashion beginning in the upper left hand corner.
Then the adjacency matrix is as follows:


0 1 0 0 0 1
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 0
0 1 0 1 0 1
1 0 0 0 1 0



2. Make a 4 by 2 rectangle graph labeled as follows:

The matrix requested is:


1 1 0 1
0 1 1 0
0 1 1 1
1 0 0 1



When this determinant is evaluated with the formula in Problem 2.4, the determinant is
(-1)+1-1-(-1)-1=-1. Notice that there also are 5 domino tilings of the 4 by 2 chessboard. Is
there some way that this matrix could be altered so that its determinant or some function
of it gives the number of domino tilings of the chessboard?

3. The matrix requested here is:


1 1 0 i
0 1 i 0
0 i 1 1
i 0 0 1
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The determinant of this matrix, according to the formula in Problem 2.4, is 5. Notice
that the complex absolute value of this determinant is the number of domino tilings of a 4
by 2 chessboard. Why does this adjusted determinant give us the number of tilings?

4. Think about what we’re actually doing when we take the determinant of a matrix.
By the formula in Problem 2.4, we calculate the determinant by taking the sum of a bunch
of terms, where each term is the product of n numbers in and n by n matrix and a positive
or negative sign. However, these aren’t just any numbers; exactly one element is taken from
each row and column. When taking the adjusted the determinant in the previous problem,
this means that a term is nonzero if and only if the the term corresponds to a perfect
matching. However, go back to Problem 2. Some of the terms canceled out. So in order to
prove that the determinant in Problem 3 gives us the number of perfect matchings, we need
to prove that the signs of all of the terms in the determinant are the same. In other words,
we need to prove that for all τ, σ ∈ Sn that:

sgn(τ)M1τ(1) · · ·Mnτ(n) = sgn(σ)M1σ(1) · · ·Mnσ(n)

where σ and τ are permutations that represent perfect matchings, in other words n is
connected to σ(n)′ in the first matching and τ(n)′ in the second.

Consider what happens when you overlay two perfect matchings in the same area. Since
each vertex is connected to exactly one other vertex in each perfect matching, each vertex will
be connected to exactly two not necessarily distinct vertices in the overlay graph. However,
this means that the overlay graph either is composed of double edges between points or
circuits. The two perfect matchings only differ along the circuit.

Suppose that an overlay of two perfect matchings contains only one circuit passing
through 2k points. In the above diagram, note that the part of τ that corresponds to
the circuit above is obtained by composing σ with a k-cycle. Therefore,

sgn(τ) = sgn(σ)(−1)k−1
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by Problem 2.3. To finish this problem, we just need to show that M1τ(1) · · ·Mnτ(n) =
(−1)k−1M1σ(1) · · ·Mnσ(n).

To do this, see what happens to each side when you chop off a square:

→

→

→

The sign always changes by -1. Therefore, the difference should just be (−1)A where
A is the area contained by the circuit. The area of this polygon can be found with Pick’s
Theorem, which states that if a polygon with vertices at lattice points (points with integer
coordinates) contains I interior lattice points and B lattice points on the boundary, the area
of the polygon is I + B

2
− 1. Notice that I must be even, as all of the points within the

polygon must be matched to another point within the polygon. Also, notice that B = 2k.
Therefore, the area of the polygon is even + k − 1. Since (−1)even = 1, the sign changes
by (−1)k−1 as desired. Therefore, the weighting proposed in Problem 3 works, as it ensures
that the sign of all terms is the same. QED
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4 Eigenvalues and Eigenvectors

1. By definition λ (a number) is an eigenvalue if there is a vector v such that Av = λv.
Suppose that v =< x, y >. Now convert this matrix equation into a system of two equations:

(
1 1
1 0

) (
x
y

)
= λ

(
x
y

)
→ x + y = λx and x = λy

Substitute the second equation into the first to obtain λy + y = λ2y. Divide by y since
y 6= 0. Solving for λ results in λ = 1±

√
5

2
as the two eigenvalues.

Now, use x = λy to produce eigenvectors. In particular, the valid eigenvectors < x, y >
are < x, x1+

√
5

2
> and < x, x1−

√
5

2
>.

2. Fibonacci numbers are obtained by taking exponents of this matrix. Therefore, the
eigenvalues of this matrix can be used to find an explicit formula for the Fibonacci numbers.

3. Consider the equation Av = λv. Currently, we have used a method of finding eigen-
values that is quite annoying for large matrices. Maybe, we could find the eigenvalues in a
more systematic way. Since there are vs on both sides of the equation, try subtracting on
both sides:

Av − λv = Av − λIv = (A− λI)v = 0.

where I is the identity matrix with the same dimensions as A. Now, consider when this
equation has nonzero solutions v (as the zero vector is not an eigenvector). If we could find
the inverse of A − λI, then we could show that the zero vector is the only solution for v.
Therefore, there are eigenvectors for a certain eigenvalue λ if and only if det(A − λI) = 0
(as matrices are invertible if and only if their determinants are not 0). The determinant on
the left side will produce a polynomial in λ. The product of the roots of any polynomial is
± the constant term of the polynomial. However, the constant term is det A, so the product
of the eigenvalues is the determinant. QED

5 Cartesian Products of Graphs

1. The Cartesian product of two triangles will consist of 9 vertices labeled (1, 1′), (1, 2′), (1, 3′),
(2, 1′), (2, 2′), (2, 3′), (3, 1′), (3, 2′), and (3, 3′). There are many different ways to place the ver-
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tices. However, the graph should look something like this:

where vertices with one coordinate in common and the other coordinates connected are
connected in the Cartesian product graph.

2. The simplest way to do this problem is by brute forcing it with algebra, so I will not
present the solution here.

3. First, think about approximately what the adjacency matrix of the Cartesian product
of two graphs G and H should look like. Suppose that G has g vertices labeled 1, 2, · · · , g
and H has h vertices labeled 1′, 2′, · · · , h′. Since G�H has vertices formed by ordered pairs
of one vertex from G and one from H, G�H must contain gh vertices and the adjacency
matrix of G�H will be a gh by gh matrix.

Now, we need to figure out how to most conveniently label the rows and columns of
this adjacency matrix. Notice that each row can be divided into g blocks of h entries since
each row contains gh entries. Therefore, it seems logical that each block of h entries should
represent ordered pairs with the same vertex from graph G. Consider the position of (i, j′)
within a row for 0 < i ≤ g and 0 < j ≤ h. i− 1 blocks of g elements were passed to get to
the ith block and this vertex is the jth element within this block, so therefore it makes sense
to put the adjacency information for vertex (i, j′) in the ((i−1)g + j)th column. There is no
reason to label the rows differently, so therefore insert a 1 for the entry in the ((a−1)g+b)th
row and ((i− 1)g + j)th column if vertices (i, j′) and (a, b′) are connected; otherwise insert
a 0.

Now that we have labeled the adjacency matrix of G�H, we can show that AG�H =
AG ⊗ Ih + Ig ⊗ AH . First, intepret AG ⊗ Ih. The entry in the ((a − 1)g + b)th row and
((i − 1)g + j)th column of this matrix will be the product of the elements in the ath row
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and ith column of AG and the bth row and jth column of Ih by the definition of the tensor
product (see lecture notes). In other words, the entry in consideration is 1 if both vertices
a and i are connected in G and b = j. Now, interpret Ig ⊗ AH . By a similar argument,
this represents the case where a = i and vertex b′ is connected to vertex j′ in H. Therefore,
the sum of these matrices accounts for the overall adjacency matrix of AG�H . Note that no
entry in the overall adjacency matrix can be 2 since that would require two vertices in G to
be connected and the same, which cannot happen.

6 Tying it all together

1. As always, we need to start by labeling the vertices of a 1 ×M row graph and the rows
and columns of the adjacency matrix. Label the graph as shown below

so that the M ×M adjacency matrix is


0 1 0 0 · · · 0
1 0 1 0 · · · 0
0 1 0 1 · · · 0
...

...
...

...
...

...
0 0 0 · · · 1 0



Suppose that x=x1, x2, · · · , xM is an eigenvector and λ is the eigenvalue for that eigen-
vector. Multiplying the adjacency matrix by the eigenvector gives a system of equations:

x2 = λx1

x1 + x3 = λx2

...

xM−2 + xM = λxM−1
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xM−1 = λxM

Now, think about how the hint applies to this system of equations. If we let xk = sin kθ
for some angle θ, then we see that λ = 2 cos θ applies for every equation except for the last
one. Now, we need to find the value of θ that would make the last equation true. Letting
k = M results in sin(M − 1)θ + sin(M + 1)θ = 2 cos θ sin Mθ. In order for this equation to
be the same as the last equation, we need sin(M + 1)θ = 0. This occurs when θ = mπ

M+1
for

all integers m. This means that the eigenvalues are of the form 2 cos mπ
M+1

. Letting m be any
integer between 1 and M inclusive produces M distinct eigenvalues. Since we have found
M eigenvalues for this matrix and have found a corresponding eigenvector for each one (just
plug in θ = mπ for xk = sin kθ) we’re done.

2. Look at Problem 5.3. Suppose that u is an eigenvector of AG with eigenvalue µ and
v is an eigenvector of AH with eigenvalue λ. Consider for a moment what happens when we
compute

AG�H(u⊗v)

= AG ⊗ Ih(u⊗v)+Ig ⊗ AH(u⊗v)

= (AGu)⊗ (Ihv) + (Igu)⊗ (AHv)

= (µ + λ)(u⊗v)

Therefore, u⊗v is an eigenvector of AG�H . This means that the eigenvalues of AG�H

are the pairwise sums of eigenvalues of AG and AH . Note that in the original adjacency
matrix the entries of AH (the vertical column 1×N graph) were weighted by i. Therefore,
the eigenvalues will also be weighted by i and its eigenvalues are of the form 2i cos nπ

N+1
.

Therefore, the eigenvalues of the weighted adjacency matrix AG�H are 2 cos mπ
M+1

+2i cos nπ
N+1

.

3. From Problems 3.3 and 2.6, we need to find
√
| det AG�H | in order to find Z(M, N)

since the adjacency matrix of a bipartite graph will always be of the form shown in Problem
2.6. Since the determinant of a matrix is the product of its eigenvalues, we know that

| det AG�H | =
M∏

m=1

N∏
n=1

|2 cos
mπ

M + 1
+ 2i cos

nπ

N + 1
|

=
M∏

m=1

N∏
n=1

(4 cos2 mπ

M + 1
+ 4 cos2 nπ

N + 1
)

1
2
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Taking the square root of this quantity gives Z(M, N), which is:

M∏
m=1

N∏
n=1

(4 cos2 mπ

M + 1
+ 4 cos2 nπ

N + 1
)

1
4
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